Snowflake’s Snowpark for Python provides a powerful programming framework for data engineers and developers to process data directly within Snowflake. With Snowpark, you can leverage Python’s versatility to build scalable data pipelines and perform advanced transformations.
This guide introduces Snowpark’s core features and walks through basic setup and operations.
Snowpark is a developer framework that allows you to:
Key features include:
To use Snowpark, ensure you have:
Install the required libraries using pip:
pip install snowflake-snowpark-python
Connect to your Snowflake account by providing credentials and connection details:
from snowflake.snowpark import Session
# Define connection parameters
connection_parameters = {
"account": "<your_account>",
"user": "<your_username>",
"password": "<your_password>",
"role": "<your_role>",
"warehouse": "<your_warehouse>",
"database": "<your_database>",
"schema": "<your_schema>"
}
# Create a session
session = Session.builder.configs(connection_parameters).create()
print("Successfully connected to Snowflake!")
Snowpark uses a DataFrame API to manipulate data:
# Create a DataFrame from a Snowflake table
df = session.table("my_table")
df.show()
Transform your data with a familiar API:
# Filter and select specific columns
filtered_df = df.filter(df["column_a"] > 100).select("column_a", "column_b")
filtered_df.show()
Save transformed data to a new table:
filtered_df.write.save_as_table("filtered_table")
Define and register a Python UDF to extend Snowflake’s functionality:
from snowflake.snowpark.functions import udf
# Define a Python UDF
@udf
def capitalize(text: str) -> str:
return text.upper()
# Apply the UDF to a column
df_with_udf = df.with_column("capitalized_column", capitalize(df["column_name"]))
df_with_udf.show()
Snowpark simplifies processing JSON, Parquet, and other semi-structured data:
# Accessing JSON data
json_df = session.sql("SELECT parse_json(json_column) AS json_data FROM my_table")
json_df.select(json_df["json_data"]["key"]).show()
Leverage Snowflake’s auto-scaling and parallel processing to optimize queries and pipelines:
Snowpark bridges the gap between Python development and Snowflake’s robust data platform. By using Snowpark, you can streamline data engineering workflows, improve performance, and unify your data processing needs.
Explore Snowpark further with the official documentation and start building scalable Python applications on Snowflake today!